
Digital Technical Journal Vol. 9 No. 4 1997 3

Spike is a performance tool developed by DIGITAL to
optimize Alpha executables on the Windows NT oper-
ating system. This optimization system has two main
components: the Spike Optimizer and the Spike
Optimization Environment. The Spike Optimizer1–3

reads in an executable, optimizes the code, and writes
out the optimized version. The Optimizer uses profile
feedback from previous runs of an application to guide
its optimizations. Profile feedback is not commonly
used in practice because it is difficult to collect, manage,
and apply profile information. The Spike Optimization
Environment1 provides a user-transparent profile feed-
back system that solves most of these problems,
allowing a user to easily optimize large applications
composed of many executables and dynamic link
libraries (DLLs).

Optimizing an executable image after it has been
compiled and linked has several advantages. The Spike
Optimizer can see the entire image and perform inter-
procedural optimizations, particularly with regard to
code layout. The Optimizer can use profile feedback
easily, because the executable that is profiled is the
same executable that is optimized; no awkward map-
ping of profile data back to the source language takes
place. Also, Spike can be used when the sources to an
application are not available, which is beneficial when
DIGITAL is working with independent software ven-
dors (ISVs) to tune applications.

Applications can be loosely classified into two cate-
gories: loop-intensive programs and call-intensive
programs. Conventional compiler technology is well
suited to loop-intensive programs. The important
loops in a program in this category are within a single
procedure, which is typically the unit of compilation.
The control flow is predictable, and the compiler can
use simple heuristics to determine the frequently exe-
cuted parts of the procedure.

Spike is designed for large, call-intensive programs;
it uses interprocedural optimization and profile feed-
back. In call-intensive programs, the important loops
span multiple procedures, and the loop bodies contain
procedure calls. Consequently, optimizations on the
loops must be interprocedural. The control flow is

Optimizing Alpha
Executables on
Windows NT with Spike

Robert S. Cohn
David W. Goodwin
P. Geoffrey Lowney

Many Windows NT–based applications are
large, call-intensive programs, with loops that
span multiple procedures and procedures that
have complex control flow and contain numer-
ous basic blocks. Spike is a profile-directed opti-
mization system for Alpha executables that is
designed to improve the performance of these
applications. The Spike Optimizer performs code
layout to improve instruction cache behavior
and hot-cold optimization to reduce the number
of instructions executed on the frequent paths
through the program. The Spike Optimization
Environment provides a complete system for
performing profile feedback by handling the
tasks of collecting, managing, and applying
profile information. Spike speeds up program
execution by as much as 33 percent and is being
used to optimize applications developed by
DIGITAL and other software vendors.

4 Digital Technical Journal Vol. 9 No. 4 1997

complex, and profile feedback is required to accurately
predict the frequently executed parts of a program.
Call overhead is large for these programs. Optimiza-
tions to reduce call overhead are most effective with
interprocedural information or profile feedback.

The Spike Optimizer implements two major optimiza-
tions to improve the performance of the call-intensive
programs just described. The first is code layout:4–6

Spike rearranges the code to improve locality and
reduce the number of instruction cache misses. The sec-
ond is hot-cold optimization (HCO):7 Spike optimizes
the frequent paths through a procedure at the expense
of the infrequently executed paths. HCO is particularly
effective in optimizing procedures with complex con-
trol flow and high procedure call overhead.

The Spike Optimization Environment provides a
system for managing profile feedback optimization.1

The user interface is simple—it requires only two user
interactions: (1) the request to start feedback collec-
tion on an application and (2) the request to end col-
lection and to use the feedback data to optimize the
application. Spike maintains a database of profile infor-
mation. When a user selects an application, Spike
makes an entry in its database for the application and
for each of its component images. For each image,
Spike keeps an instrumented version, an optimized
version, and profile information. When the original
application is run, a transparency agent substitutes the
instrumented or optimized version of the application,
as appropriate.

This paper discusses the Spike performance tool and
its use in optimizing Windows NT–based applications
running on Alpha processors. In the following section,
we describe the characteristics of Windows NT–based
applications. Next, we discuss the optimizations used
in the Spike Optimizer and evaluate their effectiveness.
We then present the Spike Optimization Environment
for managing profile feedback optimization. A sum-
mary of our results concludes the paper.

Characteristics of Windows NT–based
Applications

To evaluate Spike, we selected applications that are
typically used on Alpha computers running the
Windows NT operating system. These applications
include commercial databases, computer-aided design
(CAD) programs, compilers, and personal productiv-
ity tools. For comparison, we also included the bench-
mark programs from the SPECint95 suite.8 Table 1
identifies the applications and benchmarks, and the
workloads used to exercise them. All programs are
optimized versions of DIGITAL Alpha binaries and are
compiled with the same highly optimizing back end
that is used on the UNIX and OpenVMS systems.9 The
charts and graphs in this paper contain data from a

core set of applications. Note that we do not have a full
set of measurements for some applications.

In obtaining most of the profile-directed optimiza-
tion results presented in this paper, we used the same
input for both training and timing so that we could
know the limits of our approach. Others in the field
have shown that a reasonably chosen training input
will yield reliable speedups for other input sets.10 Our
experience confirms this result. For the code layout
results presented in Figure 11, we used the official
SPEC timing harness to measure the SPECint bench-
marks. This harness uses a SPEC training input for
profile collection and a different reference input for
timing runs.8

Figure 1 is a graph that shows, for each application
and benchmark, the size of the single executable or
DLL responsible for the majority of the execution
time. The figure contains data for most of the applica-
tions and all the benchmarks listed in Table 1. Some
Windows NT–based applications are very large. For
example, PTC has 30 times more instructions than
GCC, the largest SPECint95 benchmark. Large
Windows NT–based applications have thousands of
procedures and millions of basic blocks. With such
programs, Spike achieves significant speedups by rear-
ranging the code to reduce instruction cache misses.
Code rearrangement should also reduce the working
set of the program and the number of virtual memory
page faults, although we have not measured this
reduction.

To characterize a call-intensive application, we
looked at SQLSERVR. We estimated the loop behav-
ior of SQLSERVR by classifying each of its procedures
by the average trip count of its most frequently exe-
cuted loop, assigning a weight to each procedure
based on the number of instructions executed in the
procedure, and graphing the cumulative distribution
of instructions executed. The graph is presented in
Figure 2. Note that 69 percent of the execution time
in SQLSERVR is spent in procedures that have loops
with an average trip count less than 2. Nearly all the
run time is spent in procedures with loops with an
average trip count less than 16. An insignificant
amount of time is spent in procedures containing
loops with high trip counts. Of course, SQLSERVR
executes many loops, but the loop bodies cross multi-
ple procedures. To improve SQLSERVR performance,
Spike uses code layout techniques to optimize code
paths that cross multiple procedures. Also note that 69
percent of the execution time is spent in procedures
where the entry basic block is the most frequently exe-
cuted basic block. The entry basic block dominates the
other blocks in the procedure, and compilers often
find it a convenient location for placing instructions,
such as register saves. In SQLSERVR, this placement is
a poor decision. Our HCO targets this opportunity to

Digital Technical Journal Vol. 9 No. 4 1997 5

move instructions from the entry basic block to less
frequently executed blocks.

Figure 3 presents the loop behavior data for many of
the Windows NT–based applications listed in Table 1.
Note that the applications fall into three groups. The
most call-intensive applications are SQLSERVR,
ACAD, and EXCEL, which spend approximately 70
percent of their run time in procedures with an aver-
age trip count less than 2. C2, WINWORD, and
USTATION are moderately call intensive; they spend

approximately 40 percent of their run time in loops
with an average trip count less than 2. MAXEDA and
TEXIM are loop intensive; they spend approximately
10 percent of their run time in loops with an average
trip count less than 2. TEXIM is dominated by a single
loop with an average trip count of 465.

We further characterized the nonlooping proce-
dures by control flow. If a procedure consists of only a
few basic blocks, techniques such as inlining are effec-
tive. To estimate the control flow complexity of

Table 1
Windows NT–based Applications for Alpha Processors and SPECint95 Benchmarks

Program Full Name Type Workload

SQLSERVR Microsoft SQL Server 6.5 Database Transaction processing
SYBASE Sybase SQL Server 11.5.1 Database Transaction processing
EXCHANGE Microsoft Exchange 4.0 Mail system Mail processing
EXCEL Microsoft Excel 5.0 Spreadsheet BAPCo SYSmark for

Windows NT Version 1.0
WINWORD Microsoft Word 6.0 Word processing BAPCo SYSmark for

Windows NT Version 1.0
TEXIM Welcom Software Technology Project management BAPCo SYSmark for

Texim Project 2.0e Windows NT Version 1.0
MAXEDA Orcad MaxEDA 6.0 Electronic CAD BAPCo SYSmark for

Windows NT Version 1.0
ACAD Autodesk AutoCAD Release 13 Mechanical CAD San Diego Users Group

benchmark
CV Computervision Pmodeler v6 Mechanical CAD Mechanical model
PTC Parametric Technology Mechanical CAD Bench97

Corporation Pro/ENGINEER
Release 18.0

SOLIDWORKS SolidWorks Corporation Mechanical CAD Intake runner model
SolidWorks 97

USTATION Bentley Systems MicroStation 95 Mechanical CAD Rendering
EDS Electronic Data Systems Mechanical CAD Brake shoe model

Unigraphics 11.1
MPEG DIGITAL Light & Sound Pack MPEG viewer MPEG playback
C1, C2 Microsoft Visual C++ 5.0 Compiler 5,000 lines of C code

C1: front end
C2: back end

OPT, EM486 DIGITAL FX!32 Version 1.2 Emulation software BYTEmark benchmark
OPT: x86-to-Alpha
translator
EM486: x86 emulator

ESRI Environmental Systems Geographical Regional model
Research Institute Information Systems
ARC/INFO 7.1.1

VORTEX SPECint95 Database SPEC reference
GO SPECint95 Game SPEC reference
M88KSIM SPECint95 Simulator SPEC reference
LI SPECint95 LISP interpreter SPEC reference
COMPRESS SPECint95 Compression SPEC reference
IJPEG SPECint95 JPEG compression/ SPEC reference

decompression
GCC SPECint95 C compiler SPEC reference
PERL SPECint95 Interpreter SPEC reference

6 Digital Technical Journal Vol. 9 No. 4 1997

SQLSERVR, we classified each of its procedures by the
number of basic blocks, assigned a weight to each pro-
cedure based on the number of instructions executed
in the procedure, and graphed a cumulative distribu-
tion of the instructions executed. We restricted this
analysis to procedures that have loops with an average
trip count less than 4. (These procedures account
for 69 percent of the execution time of SQLSERVR.)
The line labeled ALL in Figure 4 represents the results
of our analysis. Note that 90 percent of the run time
of the nonlooping procedures is spent in procedures
with more than 16 basic blocks. The line labeled
FILTERED in Figure 4 represents the results when we
ignored basic blocks that are rarely executed. Note
that 65 percent of the run time of the nonlooping pro-

KEY:

INSTRUCTIONS
BASIC BLOCKS

C
O

M
P

R
E

S
S LI

M
88

K
S

IM

IJ
P

E
G

G
O

P
E

R
L

V
O

R
T

E
X

G
C

C

T
E

X
IM

M
A

X
E

D
A

C
2

E
S

R
I

S
Q

LS
E

R
V

R

U
S

T
A

T
IO

N

E
X

C
E

L

W
IN

W
O

R
D

A
C

A
D

C
V

E
D

S

P
T

C

T
O

T
A

L
C

O
U

N
T

(I
N

 T
H

O
U

S
A

N
D

S
)

10,000

1,000

100

10

1

APPLICATION OR BENCHMARK

Figure 1
Size of Windows NT–based Applications and Benchmarks

C
U

M
U

LA
T

IV
E

 IN
S

T
R

U
C

T
IO

N
S

E
X

E
C

U
T

E
D

 (
P

E
R

C
E

N
T

)

0
10
20
30
40
50
60
70
80
90

100

6432168421
AVERAGE TRIP COUNT

Figure 2
Loop Behavior of SQLSERVR

SQLSERVR

ACAD

EXCEL

C2

WINWORD

USTATION

MAXEDA

TEXIM

AVERAGE TRIP COUNT

1
0

20

40

60

80

100

2 4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K

KEY:

C
U

M
U

LA
T

IV
E

 IN
S

T
R

U
C

T
IO

N
S

E
X

E
C

U
T

E
D

 (
P

E
R

C
E

N
T

)

Figure 3
Loop Behavior of Windows NT–based Applications

Digital Technical Journal Vol. 9 No. 4 1997 7

cedures is spent in procedures with more than 16 basic
blocks. In SQLSERVR, procedures are large; many
basic blocks are executed, and many are not. Spike
uses code layout and HCO to optimize the frequently
executed paths through large procedures.

Figure 5 presents the control flow data for many of
the Windows NT–based applications listed in Table 1.
Again we measured only nonlooping procedures and
ignored basic blocks that are rarely executed. Note that
all the applications have large procedures. More than
half the run time of the nonlooping procedures is spent
in procedures that execute at least 16 basic blocks.

To estimate procedure call overhead, we counted
the number of instructions executed in the prolog and
epilog of each procedure. This estimate is conserva-
tive; it ignores the cost of the procedure linkage and
argument setup and measures only the number of
instructions used to create or remove a frame from the
stack and to save or restore preserved registers. In
SQLSERVR, 15 percent of all instructions are in pro-
logs and epilogs. HCO removes approximately one
half of this overhead.

The chart in Figure 6 shows the procedure call over-
head for most of the Windows NT–based applications
listed in Table 1. The overhead ranges from 23 percent
to 2 percent. The applications are ordered according to
the amount of run time in procedures with an average
trip count less than 8 in Figure 3. The call overhead is
roughly correlated with the amount of run time in low
trip count procedures. Figure 6 includes data for some
of the SPECint95 benchmarks, which are ordered by
the amount of run time in procedures with an average
trip count less than 2. The amount of call overhead for
these benchmarks ranges from 24 percent to 0 percent
and is more strongly correlated with the amount of run
time in low trip count procedures.

Optimizations

The Spike Optimizer is organized like a compiler. It
parses an executable into an intermediate representa-
tion, optimizes the representation, and writes out an
optimized executable. The intermediate representa-
tion is a list of Alpha machine instructions, annotated

C
U

M
U

LA
T

IV
E

 IN
S

T
R

U
C

T
IO

N
S

E
X

E
C

U
T

E
D

 (
P

E
R

C
E

N
T

) 80

100

60

40

20

16 32 48 64 80 96 112 1280
SIZE IN BASIC BLOCKS

KEY:

ALL
FILTERED

Figure 4
Complexity of Procedures in SQLSERVR for Procedures
with an Average Trip Count Less Than 4, Which Account
for 69 Percent of the Execution Time

SIZE IN BASIC BLOCKS (FILTERED)
16 32 48 64 80 96 112 1280

20

40

60

80

100

C
U

M
U

LA
T

IV
E

 IN
S

T
R

U
C

T
IO

N
S

E
X

E
C

U
T

E
D

 (
P

E
R

C
E

N
T

)

SQLSERVR (69%)

ACAD (82%)

EXCEL (71%)

C2 (44%)

WINWORD (49%)

USTATION (44%)

MAXEDA (13%)

KEY:

Note that the number that appears after the application name indicates the percentage of the total
execution time spent in procedures with an average trip count less than 4.

Figure 5
Complexity of Procedures in Windows NT–based Applications for Procedures with an Average Trip Count Less Than 4

8 Digital Technical Journal Vol. 9 No. 4 1997

with their relative probabilities. Assume that the target
is an Alpha 21164 processor.13 Each instruction is
4 bytes, and the instruction cache is organized into
32-byte lines; each cache line holds two of the four-
instruction basic blocks. A simple breadth-first code
layout orders the code AB CD EF GH, and the com-
mon path ABDFGH requires four cache lines. Two
cache lines (CD and EF) each contain a basic block
that is infrequently used but which must be resident in
the cache for the frequently used block to be executed.
If we order the code so that the common path is adja-
cent (AB DF GH CE), the infrequently used blocks are
in the same line (CE), and they do not need to be in
the cache to execute the frequently used blocks.

Straight-line code is also better able to exploit
instruction prefetch. On an instruction cache miss, the
Alpha 21164 processor prefetches the next four cache
lines into a refill buffer. After an instruction cache miss,
the processor frequently is able to execute a straight-
line code path without stalling if the code is in the
second-level cache. A branch that is taken typically
requires an additional cache miss if the target of the
branch is not already in the instruction cache.

We reorganize the basic blocks using a simple,
greedy algorithm, similar to the trace-picking algo-

with a small amount of additional information. On top
of the intermediate representation, the optimizer
builds compiler-like structures, including basic blocks,
procedures, a flow graph, a loop graph, and a call
graph.11 Images are large, and the algorithms and rep-
resentations used in the optimizer must be time and
space efficient.

The Spike Optimizer performs an interprocedural
dataflow analysis to summarize register usage within
the image.12 This enables optimizations to use and
reallocate registers. The interprocedural dataflow is
fast, requiring less than 20 seconds on the largest
applications we tested. Memory dataflow is much
more difficult to analyze because of the limited infor-
mation available in an executable, so the optimizer
analyzes only references to the stack.

Optimizations rewrite the intermediate representa-
tion. The important optimizations are code layout and
HCO. The Spike Optimizer also performs additional
optimizations to reduce the overhead of shared
libraries.

Code Layout
We derived our code layout algorithm from prior work
on profile-guided code positioning by Pettis and
Hansen.6 The goal of the algorithm is to reduce
instruction cache miss. Our algorithm consists of three
steps. The first step reorganizes basic blocks so that the
most frequent paths in a procedure are sequential,
which permits more efficient use of cache lines and the
exploitation of instruction prefetch. The second step
places procedures in memory to avoid instruction
cache conflicts. The third step splits procedures into
hot and cold sections to improve the performance of
procedure placement.

The following example illustrates basic block reor-
ganization. Consider the flow graph in Figure 7, where
each node is a basic block that contains four instruc-
tions. The arms of the conditional branches are labeled

S
Q

LS
E

R
V

R

A
C

A
D

E
X

C
E

L

C
2

W
IN

W
O

R
D

U
S

T
A

T
IO

N

M
A

X
E

D
A

T
E

X
IM LI

V
O

R
T

E
X

M
88

K
S

IM G
O

IJ
P

E
G

C
O

M
P

R
E

S
S

APPLICATION OR BENCHMARK

25

20

15

10

5

0IN
S

T
R

U
C

T
IO

N
S

 E
X

E
C

U
T

E
D

(P
E

R
C

E
N

T
 O

F
 T

O
T

A
L)

Figure 6
Procedure Call Overhead (Time Spent in Prolog and Epilog)

A

B C

D

G

H

.99 .01

E F

.99.01

A B
C D
E F
G H

A B
D F
G H
C E

Figure 7
Basic Block Reorganization

Digital Technical Journal Vol. 9 No. 4 1997 9

rithm used in trace scheduling.14 Our goal is to find a
new ordering of the basic blocks so that the fall-
through path is usually taken. We sort the list of flow
graph edges by execution count and process them in
order, beginning with the highest values. For each
edge we make the destination basic block immediately
follow the source block, unless the source has already
been assigned a successor or the destination has
already been assigned a predecessor.

We place procedures to avoid conflicts in the
instruction cache. An Alpha 21164 has a primary
instruction cache of 8 kilobytes (KB) that holds 256
lines of 32 bytes each. Two instructions conflict in the
cache if they are more than 32 bytes apart and map to
the same cache line, specifically, if address 0/32 mod
256 = address1/32 mod 256. Our strategy is to place
procedures so that frequently called procedures are
near the caller. Consider the simple example in Figure
8. Assume procedure A calls procedure C in a loop. A
and C map to the same cache lines, so on each call to
C, C replaces A in the cache, and on each return from
C, A replaces C. If we reorganize the code such that C
follows A, both A and C can fit in the cache at once,
and there are no conflict misses when A calls C.

We use another greedy algorithm to place proce-
dures. The example presented in Figure 9 illustrates
the steps. We build a call graph and assign a weight to

each edge based on the number of calls. If there is
more than one edge with the same source and destina-
tion, we compute the sum of the execution counts and
delete all but one edge. Figure 9a shows the call graph.
To place the procedures in the graph, we select the
most heavily weighted edge (B to C), record that the
two nodes should be placed adjacently, collapse the
two nodes into one (B.C), and merge their edges (as
shown in Figure 9b). We again select the most heavily
weighted edge and continue (Figure 9c) until the
graph is reduced to a single node A.D.B.C (Figure
9d). The final node contains an ordering of all the pro-
cedures. Special care is taken to ensure that we rarely
require a branch to span more than the maximum
branch displacement.

The effectiveness of procedure placement is limited
by large procedures. In the PERL benchmark from
SPEC, which is one of the smallest programs we stud-
ied, one frequently executed procedure is larger than
32 KB, four times the size of the instruction cache on
the Alpha 21164 processor. In SQLSERVR, more than
half the run time is spent in procedures with more
than 16 basic blocks. To address this problem, we split
procedures into hot and cold sections and treat each
section as an independent procedure when placing
procedures. To split a procedure, we examine each
basic block and use a threshold on the execution count

0

8 KB

16 KB

A

B

A

B

C

C
0

8 KB

16 KB

A

C

A

C

B

B
8-KB PRIMARY
INSTRUCTION
CACHE

Figure 8
Procedure Placement

A A

D
D

B B.C B.C

A.D

C

A.D.B.C
1120 10

1
50

1

20 10

(a) (b) (c) (d)

Figure 9
Steps in the Procedure Placement Algorithm

10 Digital Technical Journal Vol. 9 No. 4 1997

to decide if a basic block is cold. We use a single
threshold for the entire program. The threshold is
chosen so that the total execution time for all the basic
blocks below the threshold constitutes no more than
1 percent of the execution time of the program.
Procedures with both hot and cold basic blocks are
split; otherwise, they are left intact.

Figure 10 illustrates the importance of procedure
splitting. The figure charts the speedup on SQLSERVR,
running on an Alpha 21064 workstation,15 for the
components of our code layout algorithm. The bar
graph indicates that chaining basic blocks or placing
procedures results in a speedup of less than 4 percent,
but placing procedures after splitting yields a 15 per-
cent speedup. Using all our optimizations (chaining,
splitting, and placing) together produces a 16 percent
speedup.

Figure 11 presents the speedups from code layout for
the Windows NT–based applications and the SPECint
benchmarks running on an Alpha 21164 workstation.
Speedups range from 45 percent to 0 percent; most

applications show a noticeable improvement. The
leftmost seven Windows NT–based applications
(SQLSERVR through TEXIM) are ordered by the
amount of time spent in procedures with an average
trip count less than 8 in Figure 3. Note that all but the
most loop-intensive application show a significant
speedup from code layout. Three programs show min-
imal speedup: TEXIM is dominated by a single loop
that fits in the instruction cache, and IJPEG and
COMPRESS are dominated by two or three small
loops. These programs do not have an appreciable
amount of instruction cache miss; changing the code
layout cannot improve their performance.

Hot-Cold Optimization
Hot-cold optimization is a generalization of the
procedure-splitting technique used in our code layout
algorithm.7 We optimize the hot part of the procedure
(ignoring the cold part) by eliminating all instructions
that are required only by the cold part. To implement
this optimization, we create a hot procedure by copy-
ing the frequently executed basic blocks of a proce-
dure. All calls to the original procedure are redirected
to the hot procedure. Flow paths in the hot procedure
that target basic blocks that were not copied are redi-
rected to the appropriate basic block in the original
(cold) procedure; that is, the flows jump into the mid-
dle of the original procedure. We then optimize the
hot procedure, possibly at the expense of the flows
that pass through the cold path.

HCO is best understood by working through an
extended example. Consider the procedure foo
(shown in Figure 12), which is a simplified version of
a procedure from the Windows NT kernel.

0
PLACECHAIN PLACE/SPLIT ALL

5

10

15

20

S
P

E
E

D
U

P
 (

P
E

R
C

E
N

T
)

CODE LAYOUT ALGORITHM COMPONENT

Note that this data is for the SQLSERVR application running on an
Alpha 21064 microprocessor.

Figure 10
Speedup for Code Layout by Optimization

S
Q

LS
E

R
V

R

A
C

A
D

E
X

C
E

L

C
2

W
IN

W
O

R
D

U
S

TA
T

IO
N

T
E

X
IM

E
X

C
H

A
N

G
E

S
Y

B
A

S
E

C
V

P
T

C

S
O

LI
D

W
O

R
K

S

E
D

S

M
P

E
G C
1

O
P

T

E
M

48
6 LI

V
O

R
T

E
X

M
88

K
S

IM

G
C

C

P
E

R
L

G
O

IJ
P

E
G

C
O

M
P

R
E

S
S

50

45

40

35

30

25

20

15

10

5

0

APPLICATION OR BENCHMARK

S
P

E
E

D
U

P
 (

P
E

R
C

E
N

T
)

Figure 11
Speedup from Code Layout

Digital Technical Journal Vol. 9 No. 4 1997 11

branch to the stub. The stub saves ra on the stack and
branches to L1.

Next, note that the instruction in line 5 of foo2
writes a0, but the value of a0 is never read in the hot
procedure. a0 is not truly dead, however, because it is
still read if the branch in line 6 of foo2 is taken.
Therefore, we delete line 5 from the hot procedure
and place a copy of the instruction on the stub. HCO
tries to eliminate the uses of preserved registers in a
procedure. Preserved registers can be more expensive
than scratch registers because they must be saved and
restored if they are used. Preserved registers are typi-
cally used when the lifetime of a value crosses a call. In
the hot procedure, no lifetime crosses a call and the
use of a preserved register is unnecessary. We rename
all uses of s0 in the hot procedure to use a free scratch
register t2. We insert a copy on the stub from t2 to
s0. We can now eliminate the save and restore instruc-
tions in lines 2 and 7 of Figure 13 and place the save
on the stub.

We have eliminated all references to the stack in
the hot procedure. The stack adjusts on lines 1 and 9
in Figure 13 can be deleted from the hot procedure,
and the initial stack adjust can be placed in the stub.
The final code, including the stub stub1, is listed in
Figure 14. The number of instructions executed in the
frequent path has been reduced from 10 to 3. If the
stub is taken, then the full 10 instructions and an extra
copy and branch are executed.

Assume that the branch in line 6 of foo is almost
always taken and that lines 7 through 9 are almost
never executed. When we copy the hot part of the pro-
cedure, we exclude lines 7 through 9 of foo. The
resulting procedure foo2 is shown in Figure 13.

Note the reversal of the sense of the branch from
bne in foo to beq in foo2 and the change of the
branch’s target from L2 to L1. All calls to foo are
redirected to the hot procedure foo2. If the branch in
line 6 of foo2 is taken, then control transfers to line
7 of foo, which is in the middle of the original proce-
dure. Once passed to the original procedure, control
never passes back to the hot procedure. This feature
of HCO enables optimization; when optimizing the
hot procedure, we can relax some of the constraints
imposed by the cold procedure.

So far, we have set up the hot procedure for opti-
mization, but we have not made the procedure any
faster. Now we show how to optimize the procedure.
The hot procedure no longer contains a call, so we can
delete the save and restore of the return address in
lines 3 and 8 of foo2 in Figure 13. If the branch trans-
fers control to L1 in the cold procedure foo, we must
arrange for ra to be saved on the stack. In general,
whenever we enter the original procedure from the
hot procedure, we must fix up the state to match the
expected state. We call the fix-up operations compen-
sation code. To insert compensation code, we create a
stub and redirect the branch in line 6 of foo2 to

Figure 12
Simplified Version of a Procedure from the Windows NT
Kernel

1 foo: lda sp,16(sp) ; adjust stack
2 stq s0,0(sp) ; save s0
3 stq ra,8(sp) ; save ra
4 addl a0,1,s0 ; s0 = a0 + 1
5 addl a0,a1,a0 ; a0 = a0 + a1
6 bne s0,L2 ; branch if s0 != 0
7 L1: bsr f1 ; call f1
8 addl s0,a0,t1 ; t1 = a0 + s0
9 stl t1,40(gp) ; store t1
10 L2: ldq s0,0(sp) ; restore s0
11 ldq ra,8(sp) ; restore ra
12 lda sp,-16(sp) ; adjust stack
13 ret (ra) ; return

Figure 13
Hot Procedure

1 foo2: lda sp,16(sp)
2 stq s0,0(sp)
3 stq ra,8(sp)
4 addl a0,1,s0
5 addl a0,a1,a0
6 beq s0,L1
7 ldq s0,0(sp)
8 ldq ra,8(sp)
9 lda sp,-16(sp)
10 ret (ra)

Figure 14
Optimized Hot Procedure

1 foo2: addl a0,1,t2
2 beq t2,stub1
3 ret (ra)
4 stub1: lda sp,16(sp)
5 stq s0,0(sp)
6 stq ra,8(sp)
7 addl a0,a1,a0
8 mov t2,s0
9 br L1

Finally, we would like to inline the hot procedure.
Copies of instructions 1 and 2 can be placed inline.
For the inlined branch, we must create a new stub that
materializes the return address into ra before transfer-
ring control to stub1.

Except for partial inlining, we have implemented all the
HCO optimizations in Spike. These optimizations are

■ Partial dead code elimination16—the removal of
dead code in the hot procedure

■ Stack pointer adjust elimination—the removal of
the stack adjusts in the hot procedure

■ Preserved register elimination—the removal of the
save and restore of preserved registers in the hot
procedure

12 Digital Technical Journal Vol. 9 No. 4 1997

■ Peephole optimization—the removal in the hot
procedure of self-assignments and conditional
branches with an always-false condition

Figure 15 shows coverage statistics for the HCO
optimizations. Coverage represents the percentage of
execution time spent in each category. To compute
coverage, we assigned each procedure to a category
and then for each category calculated the total number
of instructions executed by its procedures. The cate-
gory OPTIMIZED indicates the set of procedures
optimized by HCO. The portion of the execution
time spent in these procedures is typically 60 percent
but often higher. The category INFREQUENT is the
set of procedures whose execution times are so small
(less than 0.1 percent of the total time) that we did not
think it was worthwhile to optimize the procedures.
Ignoring procedures with small execution times allows
us to optimize less than 5 percent of the instructions in
a program, a significant reduction in optimizer time.
The category NO SPLIT represents the procedures
that we could not split into hot and cold parts because
all basic blocks had similar execution counts. The cate-
gory SP MODIFIED contains procedures in which the
stack pointer is modified after the initial stack adjust in

the prolog. We decided not to optimize these proce-
dures, but it is possible to do so with extra analysis.
Note that the execution time spent in this category of
procedures is small except for in C2, where the cate-
gory contains two procedures and the coverage is 7
percent. Finally, the category NO ADVANTAGE rep-
resents the procedures that were split but that the
optimizer was not able to improve.

Figure 16 shows the overall reduction in path
length as a result of HCO, broken down by optimiza-
tion. Most of the reduction in path length comes
equally from the removal of unnecessary save and
restore instructions and from the removal of partial
dead code. Stack pointer adjust elimination and peep-
hole optimization result in smaller additional gains. A
large peephole category is usually the result of a save
and restore of a preserved register that is made unnec-
essary by HCO; the restore is converted to a self-
assignment by copy propagation, which is then
removed by peephole optimization.

HCO is most effective on call-intensive programs
such as SQLSERVR, ACAD, and C2, where we
eliminate calls when creating the hot procedures. For
WINWORD, the speedup is small because coverage is
low; we could not find a way to split the procedures.

KEY:

NO ADVANTAGE
SP MODIFIED
NO SPLIT
INFREQUENT
OPTIMIZED

S
Q

LS
E

R
V

R

A
C

A
D

E
X

C
E

L

C
2

W
IN

W
O

R
D

U
S

T
A

T
IO

N

M
A

X
E

D
A

T
E

X
IM LI

V
O

R
T

E
X

M
88

K
S

IM G
O

IJ
P

E
G

C
O

M
P

R
E

S
S

APPLICATION OR BENCHMARK

100

90

80

70

60

50

40

30

20

10

0

E
X

E
C

U
T

IO
N

 T
IM

E
 (

P
E

R
C

E
N

T
)

Figure 15
HCO Coverage by Execution Time

Digital Technical Journal Vol. 9 No. 4 1997 13

For EXCEL, HCO was able to split the procedures,
but there is often a call in the hot path. Inlining may
help in optimizing EXCEL, but frequently the call is
to a shared library.

HCO is less effective on loop-intensive programs
such as USTATION, MAXEDA, and TEXIM. HCO
provides a framework for optimizing loops, and
Chang, Mahlke, and Hwu have shown that eliminat-
ing the infrequent paths in loops enables additional
optimizations, such as loop invariant removal.17

However, our current implementation of Spike
includes almost no information about the aliasing of
memory operations; it can only optimize operations to
local stack locations, such as spills of registers.

A leaf procedure is a procedure that does not
contain a procedure call. Figure 17 compares the
amount of time spent in leaf procedures before and
after HCO is applied. By eliminating infrequent
code, HCO is able to eliminate all calls in procedures
that represent 10 percent to 20 percent of the execu-
tion time in C2, ACAD, SQLSERVR, and MAXEDA.
For the other Windows NT–based applications, the
increase in time spent in leaf procedures is very small.
Most Windows NT–based applications spend much
less than half the time in leaf procedures. To improve

the performance of these applications, an optimizer
needs to improve the performance of code with calls
in the frequent path.

Code size and its effect on cache behavior is a major
concern for us. In large applications, locality for
instructions is present but not high. If an optimization
decreases path length but also decreases locality as a
side effect, the net result can be a loss in performance.

Figure 18 shows the total increase in code size as a
result of optimization. HOT + COLD is the part of the
increase that comes from replacing a single procedure
with the original procedure plus a copy of the hot part.
STUB is the increase attributed to stub procedures.
Overall, the increase in size is small. The maximum
increase is 11.6 percent for C2. SQLSERVR has the
best speedup and is only 3.1 percent larger. Looking at
the increase in total code size is misleading, however.
HCO is not applied to procedures that are executed
infrequently, which typically account for more than 95
percent of the instructions in a program, so tripling
the size of optimized procedures would result in only a
modest increase in code size. Note that tripling the
size of the active part of an application usually disas-
trously decreases performance.

KEY:

PEEPHOLE
SP ADJUST
DEAD CODE
SAVE/RESTORE

12

10

8

6

4

2

0

S
Q

LS
E

R
V

R

A
C

A
D

E
X

C
E

L

C
2

W
IN

W
O

R
D

U
S

T
A

T
IO

N

M
A

X
E

D
A

T
E

X
IM LI

V
O

R
T

E
X

M
88

K
S

IM G
O

IJ
P

E
G

C
O

M
P

R
E

S
S

APPLICATION OR BENCHMARK

R
E

D
U

C
T

IO
N

 IN
 P

A
T

H
 L

E
N

G
T

H
 (

P
E

R
C

E
N

T
)

Figure 16
Reduction in Path Length As a Result of HCO

14 Digital Technical Journal Vol. 9 No. 4 1997

For this reason, we also measured the increase in
code size based on the procedures that were optimized.
Figure 19 compares the total sizes of the hot proce-
dures with the total sizes of the original procedures
from which they were derived. For each procedure, by
copying just the frequently executed part of the proce-
dure, we excluded about 50 percent of the original.
Next, we eliminated code that was frequently executed
but only reachable through an infrequently executed
path and therefore unreachable in the hot procedure.
This code usually represents only 1 percent of the total
size of a procedure. Finally, we optimized the hot pro-
cedure, reducing the remaining code size by about
10 percent, which is 5 percent of the size of the origi-

nal procedure. The final sizes of the hot procedures as
percentages of the sizes of the original procedures
are shown in the line labeled HOT. Making the most
frequently executed part of a program 50 percent to
80 percent smaller yields a big improvement in
instruction cache behavior; however, it would be mis-
leading to attribute this improvement to HCO, since
our code layout optimization achieves the same result.
When HCO is enabled, the cache layout optimizations
are run after HCO. The baseline we compare against
also has cache optimizations enabled, so improve-
ments attributed to HCO are improvements beyond
those that the other optimizations can make. HCO
does make the frequently executed parts 10 percent

KEY:

ORIGINAL
AFTER HCO

90

100

80

70
60

50

40

30
20
10

 0

S
Q

LS
E

R
V

R

A
C

A
D

E
X

C
E

L

C
2

W
IN

W
O

R
D

U
S

T
A

T
IO

N

M
A

X
E

D
A

T
E

X
IM LI

V
O

R
T

E
X

M
88

K
S

IM G
O

IJ
P

E
G

C
O

M
P

R
E

S
S

APPLICATION OR BENCHMARK

T
IM

E
 (

P
E

R
C

E
N

T
)

Figure 17
Time Spent in Leaf Procedures before and after HCO

14

12

10

8

6

4

2

0

S
Q

LS
E

R
V

R

A
C

A
D

E
X

C
E

L

C
2

W
IN

W
O

R
D

U
S

T
A

T
IO

N

M
A

X
E

D
A

T
E

X
IM LI

V
O

R
T

E
X

M
88

K
S

IM G
O

IJ
P

E
G

C
O

M
P

R
E

S
S

APPLICATION OR BENCHMARK

IN
C

R
E

A
S

E
 IN

 S
IZ

E
 (

P
E

R
C

E
N

T
)

KEY:

TOTAL
HOT + COLD
STUB

Figure 18
Overall Increase in Code Size after HCO

Digital Technical Journal Vol. 9 No. 4 1997 15

smaller, but we did not see significantly better instruc-
tion cache behavior when we ran programs with a
cache simulator.

If we were to perform partial inlining, only the hot
procedure would be copied. Since the hot procedure is
less than half the size of the original procedure, partial
inlining would greatly reduce the growth in code size
due to inlining.

The line labeled COLD in Figure 19 shows how the
size of the cold procedure is affected by HCO. When
we redirect all calls to the hot procedure, some code in
the original procedure becomes unreachable. The
amount of unreachable code is usually less than 10
percent, which is much smaller than the 50 percent of
the code we copied to create the hot procedure. The
infrequent paths in a procedure often rejoin the fre-
quent paths, which makes it necessary to have copies
of both types of paths in the original procedure.

The line labeled STUB shows the code size of the
stubs, which is very small. A stub contains the com-
pensation code we introduce on a transition from
a hot routine to a cold routine. We also implemented a
variation of HCO that avoided stubs by reexecuting
a procedure from the beginning instead of using a stub
to reenter a routine in the middle. It is usually not pos-
sible to reexecute the procedure from the beginning
because arguments have been overwritten. Given the
small cost of stubs, we did not pursue this method.

The line labeled TOTAL shows that HCO makes
the total code (HOT + COLD + STUB) 20 percent to
60 percent bigger. A procedure is partitioned so that
there is less than a 1 percent chance that the stub and
cold part are executed, so their size should not have a
significant effect on cache behavior as long as the pro-
file is representative.

Figure 20 shows how splitting affects the distri-
bution of time spent among different procedure sizes
for two programs where HCO is effective (C2 and
SQLSERVR) and two programs where it is not
(MAXEDA and WINWORD). For the graphs shown
in parts a through d of Figure 20, we classified each
procedure by its size in instructions before and after
HCO and plotted two cumulative distributions of exe-
cution time. The farther apart the two lines, the better
HCO was at shifting the distribution from large proce-
dures to smaller procedures. Note that most of the
programs spend a large percentage of the time in large
procedures, which suggests that optimizers need to
handle complex control flow well, even if profile infor-
mation is used to eliminate infrequent paths.

Managing Profile Feedback Optimization

Profile feedback is rarely used in practice because of
the difficulty of collecting, managing, and applying
profile information. The Spike Optimization Environ-
ment1 provides a system for managing profile feedback
that simplifies this process.

The first step in profile-directed optimization is to
instrument each image in an application so that when
the application is run, profile information is collected.
Instrumentation is most commonly done by using a
compiler to insert counters into a program during
compilation18 or by using a post-link tool to insert
counters into an image.19,20 Statistical or sampling-
based profiling is an alternative to counter-based tech-
niques.21,22 Some compiler-based and post-link systems
require that the program be compiled specially, so that
the resulting images are only useful for generating
profiles. Many large applications have lengthy and

KEY:

TOTAL
COLD
HOT
STUB

180

160
140

120

100

80

60

40

20
 0

S
Q

LS
E

R
V

R

A
C

A
D

E
X

C
E

L

C
2

W
IN

W
O

R
D

U
S

T
A

T
IO

N

M
A

X
E

D
A

T
E

X
IM LI

V
O

R
T

E
X

M
88

K
S

IM G
O

IJ
P

E
G

C
O

M
P

R
E

S
S

APPLICATION OR BENCHMARK

IN
C

R
E

A
S

E
 IN

 S
IZ

E
 (

P
E

R
C

E
N

T
)

Figure 19
Size of Optimized Procedures after HCO

16 Digital Technical Journal Vol. 9 No. 4 1997

complex build procedures. For these applications,
requiring a special rebuild of the application to collect
profiles is an obstacle to the use of profile-directed
optimization.

Spike directly instruments the final production
images so that a special compilation is not required.
Spike does require that the images be linked to include
relocation information; however, including this extra
information does not increase the number of instruc-
tions in the image and does not prevent the compiler
from performing full optimizations when generating
the image.

Most applications consist of a main executable and
many DLLs. Instrumenting all the images in an appli-
cation can be difficult, especially when the user doing
the profile-directed optimization does not know all
the DLLs in the application. Spike relieves the user of
this task by finding all the DLLs that the application
uses, even if they are loaded dynamically with a call to
LoadLibrary.

After instrumentation, the next step in profile-
directed optimization is to execute the instrumented
application and to collect profile information. Most
profile-directed optimization systems require the user
to first explicitly create instrumented copies of each
image in an application. Then the user must assemble
the instrumented images into a new version of the
application and run it to collect profile information. As
the profile information is generated, the user is
responsible for locating all the profile information
generated for each image and merging that informa-
tion into a single set of profiles. Our experience with
users has shown that requiring the user to manage the
instrumented copies of the images and the profile
information is a frequent source of problems. For
example, the user may fail to instrument each image or
may attempt to instrument an image that has already
been instrumented. The user may be unable to locate
all the generated profile information or may incor-
rectly combine the information. Spike frees the user

E
X

E
C

U
T

IO
N

 T
IM

E
 (

P
E

R
C

E
N

T
)

(a) SQLSERVR

1901701501301109070503010

50
60
70
80
90

100

40
30
20
10
0

MAXIMUM ROUTINE SIZE (INSTRUCTIONS)

KEY:

HCO WEIGHT
ORIGINAL WEIGHT

E
X

E
C

U
T

IO
N

 T
IM

E
 (

P
E

R
C

E
N

T
)

(b) C2

MAXIMUM ROUTINE SIZE (INSTRUCTIONS)

KEY:

HCO WEIGHT
ORIGINAL WEIGHT

170 1901501301109070503010
0

10
20
30
40
50

100
90
80
70
60

E
X

E
C

U
T

IO
N

 T
IM

E
 (

P
E

R
C

E
N

T
)

(d) MAXEDA

MAXIMUM ROUTINE SIZE (INSTRUCTIONS)

KEY:

HCO WEIGHT
ORIGINAL WEIGHT

1901701501301109070503010
0

10
20
30
40

100
90
80
70

60
50

E
X

E
C

U
T

IO
N

 T
IM

E
 (

P
E

R
C

E
N

T
)

(c) WINWORD

1901701501301109070503010

100

80
70
60
50

90

40
30
20
10
0

MAXIMUM ROUTINE SIZE (INSTRUCTIONS)

KEY:

HCO WEIGHT
ORIGINAL WEIGHT

Figure 20
Cumulative Distribution of Execution Time by Procedure Size before and after HCO

Digital Technical Journal Vol. 9 No. 4 1997 17

from these tedious and error-prone tasks by managing
both the instrumented copy of each image and the
profile information generated for the image.

After profile information is collected, the final step is
to use the profile information to optimize each image.
As with instrumentation, the typical profile-directed
optimization system requires the user to optimize each
image explicitly and to assemble the optimized appli-
cation. Spike uses the profile information collected for
each image to optimize all the images in an application
and assembles the optimized application for the user.

Spike Optimization Environment
The Spike Optimization Environment (SOE) provides a
simple means to instrument and optimize large applica-
tions that consist of many images. The SOE can be
accessed through a graphical interface or through a
command-line interface that provides identical func-
tionality. The command-line interface allows the SOE to
be used as part of a batch build system such as make.23

In addition to providing a simple-to-use interface,
the SOE keeps the instrumented and optimized ver-
sions of each image and the profile information associ-
ated with each image in a database. When an
application is instrumented or optimized, the original
versions of the images in the application are not modi-
fied; instead, the SOE puts an instrumented or opti-
mized version of each image into the database. When
the user invokes the original version of an application,
the SOE uses a transparency agent to execute the
instrumented or optimized version.

The SOE allows the user to instrument and optimize
an entire application using the following procedure:

1. Register: The user selects the application or applica-
tions that are to be instrumented and optimized. The
user needs to specify only the application’s main
image. Spike then finds all the implicitly linked images
(DLLs loaded when the main image is loaded) and
registers that they are part of the application.

2. Instrument: The user requests that an application
be instrumented. For each image in the application,
the SOE invokes the Spike Optimizer to instrument
that image. The SOE places the instrumented ver-
sion of each image in the database. The original
images are not modified.

3. Collect profile information: The user runs the origi-
nal application in the normal way, e.g., from a com-
mand prompt, from Windows Explorer, or indirectly
through another program. Our transparency agent
(explained later in this section) invokes the instru-
mented version of the application in place of the
original version. Any images dynamically loaded by
the application are instrumented on the fly. Each
time the application terminates, profile information
for each image is written to the database and merged
with any existing profile information.

4. Optimize: The user requests that an application be
optimized. For each image in the application, the
SOE invokes the Spike Optimizer to optimize the
image using the collected profile information and
places the optimized version of each image in the
database.

5. Run the optimized version: The user runs the orig-
inal application, and our transparency agent substi-
tutes the optimized version, allowing the user to
evaluate the effectiveness of the optimization.

6. Export: The SOE exports the optimized images
from the database, placing them in a directory spec-
ified by the user. The optimized images can then be
packaged with other application components.

The Spike Manager is the principal user interface for
the SOE. The Spike Manager displays the contents of
the database, showing the applications registered with
Spike, the images contained in each application, and
the profile information collected for each image. The
Spike Manager enables the user to control many
aspects of the instrumentation and optimization
process, including specifying which images are to be
instrumented and optimized and which version of the
application is to be executed when the original applica-
tion is invoked.

Transparent Application Substitution (TAS) is the
transparency agent developed for the Spike system to
execute a modified version of an application transpar-
ently, without replacing the original images on disk.
TAS was modeled after the transparency agent in the
DIGITAL FX!32 system24 but uses different mecha-
nisms. When the user invokes the original application,
the SOE uses TAS to load an instrumented or opti-
mized version. With TAS, the user does not need to do
anything special to execute the instrumented or opti-
mized version of an application. The user simply
invokes the original application in the usual way (e.g.,
from a command prompt, from Windows Explorer, or
indirectly through another application), and the
instrumented or optimized application runs in its
place. TAS performs application substitution in two
parts. First, TAS makes the Windows NT loader use a
modified version of the main image and DLLs.
Second, TAS makes it appear to the application that
the original images were invoked.

TAS uses debugging capabilities provided by the
Windows NT operating system to specify that when-
ever the main image of an application is invoked, the
modified version of that image should be executed
instead. In each image, the table of imported DLLs is
altered so that instead of loading the DLLs specified in
the original image, each image loads its modified
counterparts. Thus, when the user invokes an applica-
tion, the Windows NT operating system loads the
modified versions of the images contained in the appli-
cation. Some applications load DLLs with explicit calls

18 Digital Technical Journal Vol. 9 No. 4 1997

to LoadLibrary. TAS intercepts those calls and instead
loads the modified versions.

The second part of TAS makes the modified version
of the application appear to be the original version of
the application. Applications often use the name of the
main image to find other files. For example, if an
instrumented image requests its full path name, TAS
instead returns the full path name of the corresponding
original image. To do this, TAS replaces certain calls to
kernel32.dll in the instrumented and optimized images
with calls to hook procedures. Each hook procedure
determines the outcome the call would have had for
the original application and returns that result.

Instrumentation
Spike instruments an image by inserting counters into
it. Using the results of these counters, the optimizer
can determine the number of times each basic block
and control flow edge in the image is executed. Spike
uses a spanning-tree technique proposed by Knuth25

to reduce the number of counters required to fully
instrument an image. For example, in an if-then-else
clause, counting the number of times the if and then
statements are executed is enough to determine the
number of times the else statement is executed.
Register usage information is used to find free registers
for the instrumentation code, thereby reducing the
number of saves and restores necessary to free up reg-
isters.12 Typically, instrumentation makes the code 30
percent larger. As part of the profile, Spike also cap-
tures the last target of a jump or procedure call that
cannot be determined statically.

Spike’s profile information is persistent; small
changes to an image do not invalidate the profile infor-
mation collected for that image. Profile persistence is
essential for applications that require a lengthy or
cumbersome process to generate a profile, even when
using low-cost methods like statistical sampling. For
example, generating a good profile of a transaction
processing system requires extensive staging of the sys-
tem. Even when it is possible to automate the genera-
tion of profiles, some ISVs find the extra build time
unacceptable. With persistence, the user can collect a
profile once and continue to use it for successive builds
of a program as small changes are made to it. Our
experience with an ISV has shown that the speedup
from Spike declines as the profile gets older, but using
a two- or three-week-old profile is acceptable. It is also
possible to merge a profile generated by an older
image with a profile generated by a newer image.

When using an old profile, Spike must match up
procedures in the current program with procedures in
the profiled program. Spike discards profiles for proce-
dures that have changed. Relying on a procedure
name derived from debug information to do the

matching is not practical in a production environment.
Instead, Spike generates a signature based on the flow
graph of each procedure. Since signatures are not
based on the code, small changes to a procedure will
not invalidate the profile. Signatures are not unique,
however, so it can be difficult to match two lists of sig-
natures when there are differences. A minimum edit
distance algorithm26 is used to find the best match
between the list of signatures of the current program
and the list of signatures of the profiled program.

Summary

Many Windows NT–based applications are large, call-
intensive programs, with loops that cross multiple pro-
cedures and procedures that have complicated control
flow and many basic blocks. The Spike optimization
system uses code layout and hot-cold optimization to
optimize call-intensive programs. Code layout places
the frequently executed portions of the program
together in memory, thereby reducing instruction
cache miss and improving performance up to 33 per-
cent. Our code layout algorithm rearranges basic
blocks so that the fall-through path is the common
path. The algorithm also splits each procedure into a
frequently executed (hot) part and an infrequently
executed (cold) part. The split procedures are placed
so that frequent (caller, callee) pairs are adjacent.

The hot part of a procedure is the collection of the
common paths through the procedure. These paths
can be optimized at the expense of the cold paths by
removing instructions that are required only if the cold
paths are executed. Hot-cold optimization exploits this
opportunity by performing optimizations that remove
partially dead code and replace uses of preserved regis-
ters with uses of scratch registers. Hot-cold optimiza-
tion reduces the instruction path length through the
call-intensive programs by 3 percent to 8 percent.

Profile feedback is rarely used because of the diffi-
culty of collecting, managing, and applying profile
information. Spike provides a complete system for
profile feedback optimization that eliminates these
problems. It is a practical system that is being actively
used to optimize applications for Alpha processors
running the Windows NT operating system.

Acknowledgments

Tryggve Fossum supported the development of Spike
from the beginning; he also implemented two of our early
optimizations. David Wall helped us get started parsing
Windows NT images. Mike McCallig implemented our
first symbol table package. Norman Rubin contributed to
the design of the transparency agent. Many people helped
collect the data presented in this paper, including Michelle

13. Alpha 21164 Microprocessor Hardware Reference
Manual, Order No. EC-QAEQB-TE (Maynard,
Mass.: Digital Equipment Corporation, April
1995).

14. J. Fisher, “Trace Scheduling: A Technique for
Global Microcode Compaction,” IEEE Transac-
tions on Computers, C-30, 7 (July 1981): 478–490.

15. DECchip 21064 and DECchip 21064A Alpha AXP
Microprocessors Hardware Reference Manual,
Order No. EC-Q9ZUA-TE (Maynard, Mass.: Dig-
ital Equipment Corporation, June 1994).

16. J. Knoop, O. Rüthing, and B. Steffen, “Partial Dead
Code Elimination,” Proceedings of the ACM SIG-
PLAN’94 Conference on Programming Language
Design and Implementation, Orlando, Fla. (June
1994): 147–158.

17. P. Chang, S. Mahlke, and W. Hwu, “Using Profile
Information to Assist Classic Code Optimizations,”
Software —Practice and Experience, vol. 21, no.
12 (1991): 1301–1321.

18. P. G. Lowney et al., “The Multiflow Trace Schedul-
ing Compiler,” The Journal of Supercomputing,
vol. 7, no. 1/2 (1993): 51–142.

19. A. Srivastava and A. Eustace, “ATOM: A System for
Building Customized Program Analysis Tools,”
Proceedings of the ACM SIGPLAN’94 Conference
on Programming Language Design and Implemen-
tation, Orlando, Fla. (June 1994): 196–205.

20. UMIPS-V Reference Manual (pixie and pixstats)
(Sunnyvale, Calif.: MIPS Computer Systems,
1990).

21. J. Anderson et al., “Continuous Profiling: Where
Have All the Cycles Gone?” Proceedings of the Six-
teenth ACM Symposium on Operating System Prin-
ciples, Saint-Malo, France (October 1997): 1–14.

22. X. Zhang et al., “System Support for Automatic
Profiling and Optimization,” Proceedings of the
Sixteenth ACM Symposium on Operating System
Principles, Saint-Malo, France (October 1997):
15–26.

23. S. Feldman, “Make—A Program for Maintaining
Computer Programs,” Software —Practice and
Experience, vol. 9, no. 4 (1979): 255–265.

24. R. Hookway and M. Herdeg, “DIGITAL FX!32:
Combining Emulation and Binary Translation,”
Digital Technical Journal, vol. 9, no. 1 (1997):
3–12.

25. D. Knuth, The Art of Computer Programming: Vol.
1, Fundamental Algorithms (Reading, Mass.: Addi-
son-Wesley, 1973).

26. W. Miller and E. Meyers, “A File Comparison Pro-
gram,” Software —Practice and Experience, vol. 11
(1985): 1025–1040.

Digital Technical Journal Vol. 9 No. 4 1997 19

Alexander, Brush Bradley, Bob Corrigan, Jeff Donsbach,
Hans Graves, John Henning, Phil Hutchinson, Herb
Lane, Matt Lapine, Wei Liu, Jeff Seltzer, Arnaud Sergent,
John Shakshober, and Robert Zhu.

References

1. R. Cohn, D. Goodwin, P. G. Lowney, and N.
Rubin, “Spike: An Optimizer for Alpha/NT Exe-
cutables,” The USENIX Windows NT Workshop Pro-
ceedings, Seattle, Wash. (August 1997): 17–24.

2. A. Srivastava and D. Wall, “Link-time Optimization
of Address Calculation on a 64-bit Architecture,”
Proceedings of the ACM SIGPLAN’94 Conference
on Programming Language Design and Implemen-
tation, Orlando, Fla. (June 1994): 49–60.

3. L. Wilson, C. Neth, and M. Rickabaugh, “Deliver-
ing Binary Object Modification Tools for Program
Analysis and Optimization,” Digital Technical
Journal, vol. 8, no. 1 (1996): 18–31.

4. S. McFarling, “Program Optimization for Instruc-
tion Caches,” ASPLOS III Proceedings, Boston,
Mass. (April 1989): 183–193.

5. W. Hwu and P. Chang, “Achieving High Instruc-
tion Cache Performance with an Optimizing Com-
piler,” Proceedings of the Sixteenth Annual
International Symposium on Computer Architec-
ture, Jerusalem, Israel (June 1989).

6. K. Pettis and R. Hansen, “Profile Guided Code
Positioning,” Proceedings of the ACM SIGPLAN’90
Conference on Programming Language Design
and Implementation, White Plains, N.Y. (June
1990): 16–27.

7. R. Cohn and P. G. Lowney, “Hot Cold Optimiza-
tion of Large Windows/NT Applications,” MICRO-
29, Paris, France (December 1996): 80–89.

8. Information about the SPEC benchmarks is avail-
able from the Standard Performance Evaluation
Corporation at http://www.specbench.org/.

9. D. Blickstein et al., “The GEM Optimizing Com-
piler System,” Digital Technical Journal, vol. 4, no. 4
(1992): 121–136.

10. B. Calder, D. Grunwald, and A. Srivastava, “The
Predictability of Branches in Libraries,” Proceed-
ings of the Twenty-eighth Annual International
Symposium on Microarchitecture, Ann Arbor,
Mich. (November 1995): 24–34.

11. A. Aho, R. Sethi, and J. Ullman, Compilers: Princi-
ples, Techniques, and Tools (Reading, Mass.: Addison-
Wesley, 1985).

12. D. Goodwin, “Interprocedural Dataflow Analysis
in an Executable Optimizer,” Proceedings of the
ACM SIGPLAN’97 Conference on Programming
Language Design and Implementation, Las Vegas,
Nev. (June 1997): 122–133.

Biographies

20 Digital Technical Journal Vol. 9 No. 4 1997

Robert S. Cohn
Robert Cohn is a consulting engineer in the VSSAD
Group, where he works on advanced compiler technology
for Alpha microprocessors. Since joining DIGITAL in
1992, Robert has implemented profile-feedback and trace
scheduling in the GEM compiler. He also implemented the
code layout optimizations in UNIX OM. Robert has been
a key contributor to Spike, implementing both hot-cold
optimization and the code layout optimizations. Robert
received a B.A. from Cornell University and a Ph.D. in
computer science from Carnegie Mellon University.

David W. Goodwin
David W. Goodwin is a principal engineer in the VSSAD
Group, where he works on architecture and compiler
advanced development. Since joining DIGITAL in 1996,
he has contributed to the performance analysis of the 21164,
21164PC, and 21264 microprocessors. For the Spike pro-
ject, David implemented the Spike Optimization Environ-
ment and the interprocedural dataflow analysis. David
received a B.S.E.E. from Virginia Tech. and a Ph.D. in
computer science from the University of California, Davis.

P. Geoffrey Lowney
P. Geoffrey Lowney is a senior consulting engineer in the
VSSAD Group, where he works on compilers and architec-
ture to improve the performance of Alpha microprocessors.
Geoff is the leader of the Spike project. For Spike, he
implemented the infrastructure for parsing executables.
Prior to joining DIGITAL in 1991, Geoff worked at
Hewlett Packard/Apollo, Multiflow Computer, and New
York University. Geoff received a B.A. in mathematics and
a Ph.D. in computer science, both from Yale University.

